

Zero Trust in Zero Trust?

Virgil D. Gligor

December 17, 2022

CMU-CyLab-22-002

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

https://cylab.cmu.edu/files/pdfs/tech_reports/CMUCyLab22002.pdf
http://www.cylab.cmu.edu/

Zero Trust in Zero Trust?
Virgil D. Gligor

Carnegie Mellon University
CyLab Technical Report 22-002

December 17, 2022

Abstract—We review the standard definitions of trust, zero
trust, trusted service, and trust establishment, and show that zero
trust is unachievable in any enterprise network; i.e., at least one
security property is impossible to establish unconditionally with
confidence for some devices and many others are impractical to
establish for other devices. In fact, zero trust has meaning only as
an unreachable limit of trust establishment. Since NIST’s zero-
trust architectures cannot be about zero trust, we review their
key characteristics and show that their main goal of limiting
the effects of security breaches to single trust zones is often
unmet. These architectures can never serve as security models
nor can they be used to protect critical infrastructures as they
cannot counter many common attacks, much less advanced ones.
However, mature zero-trust architectures can reduce recovery
costs after breaches, but the reduction is lower than provided by
some alternate techniques.

In view of these facts, it seems surprising that a 2021
Presidential Executive Order incorrectly calls NIST’s zero-trust
architecture a “security model,” mandates its adoption, and
frequently requires trust establishment, which exclude zero trust.
Nevertheless, these architectures are motivated by practical goals.
They rely on low-cost security assurance to limit some penetration
damage and decrease recovery cost. They aim to detect trust-zone
penetrations early by continuous monitoring of network devices.
They maintain backward compatibility with existing (insecure)
commodity software to facilitate timely deployment. In contrast
with low-cost assurance of these architectures, trust establishment
encourages flexible cost allocation among security functions and
assurances, risk reduction, and adversary deterrence.

I. INTRODUCTION

Recent government and industry initiatives have vigorously
promoted zero trust architectures [1] for network security.
Specifically, the first ever Presidential Executive Order on
cyber-security mandates use of these architectures throughout
the US government [2], [3] and various entities are already
planing deployment [4], [5]. Remarkably, a vast majority (i.e.,
83%) of security and risk professionals say that zero trust
architectures are essential to their organizations and most (i.e.,
over 80%) plan adoption this year [6]. This unquestionable
demand has encouraged vendors to “zero-trust wash” their
security products by claiming that all are zero-trust compli-
ant [7]. Undoubtedly, the term “zero trust” is no longer a
mere security buzzword as defined in Appendix B. As of
now, its Google search count represents approximately 18% of
the search results for the term “network security.” Zero trust
has become a slogan that hyperbolically conveys achieving an
impossible security state at a time when cyber-crime is poised
to exceed 1% of the global GDP [8] and more in US.

Given their impact, government and industry initiatives
promoting zero-trust architectures require some scrutiny to

delimit their usefulness. This report does not address key
implementation challenges of zero-trust architectures, which
are summarized in Section IV-C. We optimistically assume that
they will be solved in the next few years. Instead, it focuses
on basic problems that remain after resolving these challenges.
This enables us to assess the virtues and limitations of these
architectures that persist long term.

Basic problems. We focus on three problems. First, after
reviewing standard definitions of the terms trust, zero trust,
trusted service, and trust establishment (Section II), we show
that zero trust is unachievable in any enterprise network;
i.e., it is impossible to establish a given security property
unconditionally with certainty for some network devices and
impractical to establish other security properties for other
devices (Section III). To gain broader perspective, we give
a few examples of zero trust failures outside of traditional
networks and show that they range from almost zero trust,
to conjectured, impractical, and even undesirable zero trust.
(Appendix A). We argue that trust establishment is a real-life
foundation of security and zero trust has meaning only as its
unreachable limit (Section III-C).

Second, we review the motivation and goals of the zero
trust architecture, or zero trust model [1], [2], [3], since they
must differ from the unachievable notion of zero trust (Sec-
tion IV). We show that zero-trust architectures are unsound
and inadequate for protecting critical infrastructures. They
are unsound because they fail to meet their primary goal
(Section V-B). That is, minimizing trust zones to limit an
adversary’s “lateral” movement after zone penetration fails
to counter cross-zone attacks, which enable such movement.
Also, these architectures lack minimization criteria for trust
zones where least privilege operation is insufficient; e.g., to
separate administrative duties. Furthermore, they fail to limit
the number of external zones that need to be trusted by an
enterprise network, thereby expanding an adversary’s locus of
attack against the enterprise without meaningful recourse.

Lack of soundness does not mean that these architectures
are useless for enterprise networks (Section VII-C). However,
it does mean that they can never serve as security models
despite US government insistence [1], [2], [3], [4], and cannot
be relied upon to protect critical infrastructures; see defini-
tions of these infrastructures at https://www.cisa.gov/critical-
infrastructure-sectors. Their inadequacy for pervasive govern-
ment use is manifest: they fail to support many, and prevent
implementation of some, government security requirements
(Section VI).

Third, zero-trust architectures have demonstrably low but
non-zero defense value for enterprise networks. Admittedly,
adversary penetrations are inevitable [5], and often occur can
multiple times per year [9]. These architectures can neither
counter nor deter common adversary attacks [10] — much
less the advanced ones (Section VII-B). Their virtue is the
reduction of penetration-recovery costs. However, the cost re-
duction is lower than that of other techniques (Section VII-C).

Practical Goals. Zero-trust architectures have three practical
goals. They employ only low-cost assurance for commodity
software which, despite its low defense value, can limit
some attack damage and decrease penetration-recovery cost.
They monitor network devices of trust zones continuously to
detect inevitable penetrations early. They maintain backward
compatibility with existing (insecure) commodity software to
enable timely deployment without major re-design.

What justifies these goals? In describing the dismal state of
cyber-security before zero-trust architectures, the first US Na-
tional Cyber Director, Chris Inglis, has been quoted1 as saying
“it’s all offense and no defense.” In view of this, low but non-
zero defense, early detection of inevitable penetrations, and
reduced attack damage and recovery cost are an improvement
over the status quo ante.

II. BACKGROUND: TRUST, ZERO TRUST, TRUSTED, AND
TRUST ESTABLISHMENT

A. Basic notions
We review the definitions of trust, zero trust, and trusted in

their general sense, which are accepted in security and beyond.
We show how trust establishment can reduce the liability of
(non-zero) trust and enable a system to become trusted.

Trust. The general definition of trust (noun) and its most
common interpretation is given by the Oxford Languages
Dictionary (e.g., via a Google search):
1. Firm belief in the reliability, truth, ability, or strength of
someone or something.
1.1. Acceptance of the truth of a statement without evidence
or investigation.

In security, the noun trust refers to beliefs in security
properties of a system or network component, or more, without
verification or monitoring. This implies that trust has the
liability that an adversary can control the component operation
without detection. Hence, the need to trust is always detrimen-
tal security. If beliefs in a security property can be measured
(e.g., by probability, or ordering, metrics), then their liabilities
can be demonstrably reduced2.

Zero trust. The need to trust is reduced by decreasing the
number of unjustified beliefs and increasing security-property

1The full quote “If I were to score cyber the way we score soccer, the tally
would be 462−452 twenty minutes into the game. In other words, it’s all
offense and no defense.” is given by Nicole Pelroth in This is how they tell
me the world ends, page 232, Bloomsburry Publishing, New York, NY, 2020.

2Belief-justification metrics depend on adversary definitions. For example,
limited formal code-level verification can yield weaker belief justifications
in networks facing an Internet (e.g., nation-state) adversary and stronger in
special-purpose systems disconnected from the Internet. Also, some metrics
may yield incomparable strengths for different adversaries yielding partial
orders of belief justifications [11].

Legend:
green = justified beliefs, reduced risk, increased attack deterrence

red = unjustified beliefs, residual risk, undeterred attacks

Users’ beliefs of security-property
trustworthiness

users’ betrayal
aversion

- recovery
- forward secrecy

- insurance . . .

e.g., deterrence
- audit & punishment
- increased attack cost
- attack/intrusion detection & response ...

TE

users’ risk
aversion

zero
trust

- security functions
verification (e.g.,

authentication, authorization)
monitoring, recommendations, etc.

- operational-security assurance
enforce security principles;
e.g., least privilege, fail-safe defaults,
separation of duty,…

non-zero trust

- correctness assurance
models, design, implementation;
proofs, testing, etc.

Trust Establishment in Security

Fig. 1: Trust, Zero Trust, and Trust Establishment (TE)

assurance; e.g., by verification and monitoring. Reduction,
which is sometimes called minimization [1], stops when it is
no longer possible or practical. When it’s no longer possible,
all beliefs in any security property of any component are
justified unconditionally with certainty (i.e., independent of
other services and with 100% probability) and there is no
security liability left. This ideal limit is called zero trust.
Most often, however, the reduction stops when the opportunity
cost of further security-property justification exceeds a desired
limit. In this case, some beliefs are not (unconditionally) justi-
fied and some liability remains. Since different minimization-
stopping points exist, multiple practical limits appear, which
are encompassed by non-zero trust.

The vertical axis of Figure 1 illustrates intuitively (i.e.,
without giving a belief metric) how accumulating evidence
of security-function use, security-principle enforcement, and
correctness assurance reduces the need to trust security prop-
erties and hence liability, and drives them towards the zero
trust limit. If all beliefs for all security properties of a network
component could ever be reached, then zero trust is achieved
for that component. In Section III below, we show that this
ideal limit is unachievable; i.e., it is impossible for some
network devices and impractical for others.

Trusted. In standard definition, when the adjective trusted
qualifies a service it implies that the service is reliable and
its operation yields truthful results. Similarly, as a verb tense
(i.e., past tense, past participle), trusted allows someone to
have, use, or look after a service of importance or value
with confidence; see common use in the Oxford Languages
Dictionary. In security, a trusted service means that the beliefs
in the service’s security properties are backed by some, possi-
bly independently evaluated, assurance evidence; e.g., trusted
path, trusted recovery, trusted facility management [12] and
equivalents [13]. This implies that the need to trust the service
is reduced since some assurance evidence exists that justifies

2

beliefs of trustworthiness in that service.
If zero trust in a service were possible, it would assure

that the service is trusted unconditionally with certainty. In
contrast, non-zero trust in a service means that not all beliefs
of trustworthiness of the service’s security properties are fully
justified; see the non-zero trust region of Figure 1. Then,
what additional conditions guarantee that a service can become
trusted? In other words, how can a service become trusted
if zero-trust is unachievable? Trust establishment [14], [15]
answers this sufficiency question as argued below.

B. Trust establishment in security
How to establish trust among humans has been a sub-

ject on substantial research in behavioral economics [16].
Foundational results are derived by scientific experiments
using trust games and neurobiology, and go beyond the well-
understood need to decrease individual users’ risk aversion.
The direct application of these results to trust establishment
in networks of human and computers has been explained in
some detail [14] and illustrated in Figure 1. In summary, trust
establishment in a network service or component that can be
attacked by an adversary requires that

1) users’ beliefs of trustworthy component operation are
justified at some level of confidence; e.g., directly by security
functions and assurances or indirectly by trustworthiness rec-
ommendations; and

2) users’ risk aversion towards using the service or compo-
nent is decreased; e.g., by risk mitigation measures, such as
recovery, forward secrecy, insurance; and

3) users’ betrayal (e.g., inequity) aversion caused by com-
ponent misbehavior when controlled by an adversary is de-
creased; e.g., by adversary-deterrence measures, such as audit
and commensurate punishment, increased attack cost, and
attack detection and response.

Example. Trust can be established among strangers in e-
commerce protocols. For instance, eBay encourages users to
engage other users in e-commerce as follows. First, it helps
users create beliefs of trustworthiness in others by employing
a trustworthiness rank; i.e., an eBay recommendation algo-
rithm ranks individual user trustworthiness in various types
of transactions. Second, if a user selects some other user
for a sale-purchase transaction where the selected user has
a high eBay recommendation, eBay decreases first user’s risk
aversion by selling transaction insurance. Third, eBay employs
a deterrence measure: if, after auditing transaction records, it
finds that a highly-recommended user cheated an unsuspecting
user, it evicts the cheater. Note that decreasing risk aversion
without decreasing betrayal aversion, or the other way around,
would eventually degrade eBay’s business model and render
the beliefs of trustworthiness created by the recommendation
system insufficient for protocol’s security. �

Although satisfying any proper subset of the three require-
ments above is insufficient [16], trade-offs in the extent to
which each requirement is satisfied are often necessary.

Security of many other social protocols over the Internet are
also based on trust establishment [15].

III. ZERO TRUST IS UNACHIEVABLE IN SECURITY

In this section, we show the impossibility of zero trust for
a specific security property of “black box” devices, which
are used in all servers and endpoints of enterprise networks.
Then we argue that zero trust is impractical for other security
properties of enterprise services and devices. Since zero trust
is unachievable, we explain why trust establishment can be a
practical foundation of network security, and why zero trust
can be viewed as an unreachable limit of trust establishment.

A. Impossibility
Zero trust is unachievable for “black box” devices since at

least one security property cannot be justified unconditionally3

and with certainty; i.e., with probability 1 in finite time4.
Black-box devices. The main characteristic of black-box

devices is that they cannot be opened so that their internal
code and data structures can be examined by an external
verifier, though all their hardware characteristics are publicly
known. The verifier can only interact with a black-box device
through its interface, by providing inputs and receiving out-
puts [17]. For instance, access to the memory of a black box
by any external program requires code execution inside the
black box. Typical black boxes include a variety of device
controllers such as network-interface controllers, baseboard
management controllers, disk controllers, and USB device
controllers. Protected subsystems of endpoint devices (e.g.,
kernels) can become black boxes for remote servers that scan
devices’ configurations and monitor their communications.

An unjustifiable property. Security properties of computa-
tions performed inside a black-box device exist which cannot
be verified or tested unconditionally with certainty or exter-
nally monitored; e.g., the property of absence of malicious
software (aka., malware) in a device controller’s firmware.
Malware can prevent direct memory access since it mediates
all device transfers. Naive attempts to remove it by re-flashing
device firmware by an OS kernel driver do not work because
malware can hide in firmware areas that do not get updated
or disingenuously respond with a prepackaged message; e.g.,
“update complete” or “already the latest version” [18].

Black-box devices can only be
a) externally verified to detect malware absence; and if

malware is not detected, they can be invoked repeatedly until
the next verification; and

b) continuously monitored to detect malware presence in
finite time; e.g., until the next verification.

Figure 2 illustrates the impossibility of either alternative.
In case a), necessary conditions for unconditional malware
absence in device firmware show that the best result that
can be obtained is probabilistic [19]. Any demonstrably cor-
rect challenge-response verification falsely assures that device
firmware is malware free with probability at least p > 0. The
intuition is simple: any malware can always guess the correct

3Without secrets, hardware trusted modules, or adversary-power bounds.
4Black-box testing/monitoring must be in finite time [17]; otherwise, it

could never reach a non-asymptotic conclusion in practice.

3

b)	certainty: communication	is	covert,	context	dependent,	or	inexistent

periodic	verification	
of	malware	absence
unconditionally

challenge	hn

result,	time	

a) certainty:	Pr[false malware	absence	at	n-th independent	challenge	hn]	≥	pn

device
controller
(e.g.,	FW)

device
memory

black-box

continuous	monitoring
to	detect	comm.	with	
remote	adversary

messages	tapmessages	

device
controller
(e.g.,	FW)

device
memory

black-box

problem: unknownmalware	has	asymmetric	advantage	over	all AI/ML	algorithms	

Fig. 2: Impossibility of establishing malware absence

result to be be returned in response to challenge hi in the veri-
fier’s expected time with some lower-bound probability p > 0.
Since verification can be repeated n times independently, the
probability of false malware absence cannot be lower than pn,
and thus it cannot reach zero except asymptotically in n; see
Figure 2-a. Hence, in black-box devices, the malware-absence
property can never be justified with probability 1 in finite
time; i.e., 1− pn → 1 only asymptotically in n. (In contrast,
periodic verification yielding high, but possibly different from
1, probability of malware freedom is implied by root of trust
establishment [19], [20].)

In case b), we note that some malware may not have any
(hyper) properties [21] that can be detected by an external
observer with certainty. Since this malware has no externally
detectable properties, the best method to discover its presence
in a black-box device is to place a non-intrusive, out-of-
band network tap external to the device host, and attempt
to detect malware communication with its remote controller
by continuous monitoring [22]; see Figure 2-b. This type
of monitoring has been called the adversary’s “worst night-
mare” [23]. Unfortunately, the worst nightmare turns out to be
insufficient: use of the most advanced ML/AI monitoring al-
gorithms whose design and implementation are demonstrably
correct may still fail to detect malware presence with certainty.
Why? An adversary who inserts malware into a device has
an asymmetric advantage over monitor designers: s/he knows
all the properties of the monitor’s ML/AI algorithms whereas
the algorithm designers cannot rely on any externally visible
malware property, including the certainty of communication
with its remote controller. Hence, the adversary’s malware can
circumvent all (finite-time) detection algorithms with non-zero
probability.

For instance, covert (e.g., steganographic) communication
between malware and its remote controller cannot be detected
by an external monitor with certainty, since it can take
place infrequently, at unpredictable times, and disguised as
legitimate communication. Furthermore, malware activation by
its remote controller can be context dependent. Malware in

USB devices can be activated in the context of specific hosts
when the device is connected to them and remains inactive,
and hence undetectable, when connected to all other hosts.
This has enabled USB micro-controller malware to breach
air gaps [24]. Also, malware activation can be time-triggered,
which avoids all remote communications with its controller
and renders monitoring useless.

Endpoint software such as OS, security, separation, and
micro kernels become black boxes after boot, since only
their interface can be accessed by remote external monitors.
Continuous monitoring of endpoint communication using the
best ML/AI algorithms after legitimate connection setup, as
recently advocated by Zero Trust 2.0 [25], can detect a variety
of threats. However, they cannot detect the presence of all
malware with certainty, as argued above.

Early warnings. Early warnings implying the impossibility
of achieving zero trust seem to have been ignored by zero-
trust advocates. For example, more than a decade ago, in a
deliberately provocative conjecture, Lampson [26] stated that
security is fractal: “each part is as complex as the whole,
and there are always more things to worry about.” If security
is fractal, clearly zero trust cannot be achieved. Schneider
reinforced this conjecture by stating that trust can only be
relocated [27]. Damgård observed that assurance obtained by
reduction proofs in cryptography [28] only relocate trust to
unproven conjectures, and Gollmann [29] re-emphasized this
by noting that security reductions often assume that something
unknown cannot happen. All imply that unproven security
properties prevents zero trust, which must be unconditional.

B. Impracticality
As illustrated in Figure 1, zero trust requires that all security

properties of all network devices (other than “black boxes”)
must be justified with high assurance; i.e., using sound defini-
tions and formal proofs of code correctness. The long-standing
“axioms” of insecurity [30] imply that there will always be
only low assurance for some security properties of some
commodity software that yields unjustified, insufficiently, or
poorly justified beliefs, and there will always be adversaries
to take advantage of them. That is, rapid innovation in the
commodity software market (enabled by near-zero cost of
entry, no liability, and hardly any regulation) often eschews
use of costlier high-assurance methods in favor of developing
new functions to meet market demand.

Zero trust requires high assurance since it must always pre-
vent security-property violations by adversaries; e.g., system
and network software must be penetration free and can never
be breached. This is equivalent to reaching perfection, which
is always impractical in commodity software [26]. However,
in the real world, rational defenders accept low assurance
and inevitable security-property breaches by adversaries who
could not be deterred, and focus on reducing breach-recovery
costs [31]. Hence, weak belief justification by low assurance
always precludes achieving zero trust. It follows that eschew-
ing high assurance and its higher opportunity cost precludes

4

achieving minimum trust, and hence zero trust, as illustrated
intuitively on the vertical axis of Figure 1.

C. Zero trust is an unreachable limit of trust establishment
Trust establishment in practice. Why is trust establish-

ment necessary in practice? Trust establishment fuels elec-
tronic commerce and safe social protocols over computer
networks [15]. If zero trust were required instead of trust
establishment, all these protocols would fail in a finite (e.g.,
small) number of steps since zero trust is unachievable in any
of these protocols unconditionally and with certainty.

Why is trust establishment useful in practice? Trust estab-
lishment does not require any specific assurance technique
for justifying beliefs in security properties in the presence
of an adversary. Instead, it requires that unjustified, poorly
justified, or insufficiently justified beliefs be compensated by
risk decrease and deterrence increase, as deemed appropriate
in specific network applications. This implies that it can
allocate development and operation costs in a flexible manner.
For example, instead of incurring uniformly high-assurance
cost for all security properties of network components, trust
establishment allows lower-assurance costs for some or all
components’ properties plus some additional risk-mitigation
and deterrence-support costs for them. This allows cost-
allocation trade-offs that are unavailable elsewhere.

A limit of trust establishment. Trust establishment is in-
tended to counter liabilities caused by adversaries who can
exploit security properties when zero trust cannot be achieved.
For instance, some security properties of a network component
cannot be assured using simple methods and tools, and hence
only a few beliefs of trustworthiness can be justified. Since
trust is not minimized in this case, it cannot be zero, and
trust establishment becomes necessary to compensate for the
missing evidence of trustworthiness; see Figure 1. Hence, if
trust establishment is necessary for some security properties of
a network component, the zero trust limit cannot be reached
for an entire network. Conversely, if hypothetically the zero-
trust limits could be reached for all security properties of
all network components, trust establishment would be unnec-
essary: all beliefs in all security properties would be fully
justified, there would be no residual risk or need for adversary
deterrence, since all network components would be completely
resistant to all adversary attacks. Since this is impossible in
any network, it follows that zero trust has meaning only as an
unreachable limit of trust establishment.

IV. REVIEW OF ZERO-TRUST ARCHITECTURES

The question of this report’s title can be answered with
certainty now: there is no zero trust in “zero trust.” Hence what
the US Government and industry call a zero trust architecture
or a zero trust model [1], [2], [3] must be explained since it
must have other virtues than zero trust.

Implicit Trust Zones. To understand the motivation for zero-
trust architectures, one must recall the danger of exclusive
reliance on single-perimeter protection in enterprise networks.
A typical enterprise operates several internal networks, each

comprising commodity devices, software, and applications at
remote locations, has mobile users, and uses cloud services [1].
In network-perimeter protection, an external user’s access to
devices, services, and data objects located inside a network
perimeter is verified upon every perimeter entry and never
thereafter. Hence, a protection perimeter defines an implicit
trust zone: upon perimeter entry, the user’s computations
(e.g., processes) become trusted to maintain object secrecy
and integrity, by default. If an adversary can penetrate an
implicit trust zone (e.g., by credentials theft, by exploiting
incorrect perimeter-entry verification), the adversary’s compu-
tations become automatically trusted, and can move “laterally”
throughout the zone. This compromises the implicitly trusted
zone and increases the complexity and cost of recovery.

Motivation. Zero-trust architectures eliminate exclusive re-
liance on any single perimeter by partitioning enterprise-
network resources into multiple micro-segments, each com-
prising network devices, services, and data objects [1]. Each
micro-segment represents an implicit trust zone that can be
entered only after a separate verification check on the zone’s
identity and accessor’s credentials (e.g., users’ identities, roles,
permissions, privileges, access levels) passes. Since a mini-
mum set of credentials can be assigned to a zone’s devices,
services, and programs to accomplish their tasks, the zone can
operate with least privileges. Furthermore, a zone’s operations
can be monitored continuously and its programs’ behavioral
patterns an be checked when granting access. Repeated par-
titioning of large implicit trust zones by micro-segmentation
reaches a minimum when trust zones comprise single uniquely
identified devices; see Figure 5-b of Section IV-A below.

Main Goal. Zero-trust architectures partition a network into
multiple trust zones and minimize them. Minimization aims
to limit an adversary’s “lateral” movement to a single pene-
trated zone. This can limit zone-penetration damage instead
of preventing zone penetration, which would require costlier
high-assurance methods for commodity software security.

Other goals. An additional goal is to detect security
breaches early, by continuous monitoring of devises, systems,
applications and communications of a network micro-segment
(i.e., of an implicit trust zone), thereby decreasing the delay to
penetration recovery. Equally important, is to maintain back-
ward compatibility with existing (insecure) network, system,
and application software, which enables timely deployment
without major re-design and disruption.

A. Key characteristics

Although zero trust in unachievable in network security,
it is important to understand what the US Government and
industry label as a “zero-trust architecture” [1]. We give a brief
but hypothetical example of network micro-segmentation into
implicit trust zones and describe the conditions under which
their minimization to single-device zones can be achieved.

A network perimeter is protected by firewalls that check
the location of users attempting access; see the light-blue
zone of Figure 3-a. If an adversary at location 3 penetrates

5

a) location-based access verification; adversary is at location 3

b) lateral movement after perimeter penetration by adversary
at location 3

location 1

location 2

location 3

location
-based
access
Firewall

Devices

implicit trust zone*

X

location 1

location 2

location 3

location
-based
access
Firewall
penetration

“lateral”
movement

implicit trust zone

~1hr 2
4 m

in.
~30 min.

Devices

Fig. 3: Implicit trust zone and lateral adversary movement

a perimeter firewall5, the adversary’s computation becomes
automatically trusted and can move “laterally” throughout the
light-blue zone, as illustrated in Figure 3-b. Recent industry
reports show that, on the average, it takes 1 hour and 24
minutes for an adversary to move from the initial point of
compromise to other servers within a zone, and that about a
third of these attacks enables “lateral” movement in under 30
minutes [33]. As illustrated below, if additional verification is
performed inside a zone to restrict objects/devices access, then
the adversary’s “lateral” movement can be limited.

Zero-trust architectures [1] aim to eliminate exclusive re-
liance on (e.g., location-based) protection perimeters, in order
to limit an adversary’s “lateral” movement in a compromised
network. This requires micro-segmentation of a zone’s re-
sources (e.g., network devices, services, and data objects) to
create smaller implicit trust zones, and granting access to
resources based on:

(i) continuous verification of a user’s attributes, such as
unique identity, credentials (e.g., roles, permissions, access
levels), and monitoring behavioral patterns in granting access.
This explicitly rejects verification based on verify-once-trust-

5The main reason for firewall penetration is misconfiguration, which is more
prevalent than firewall OS, applications, and insider-attack vulnerabilities.
Misconfiguration is often caused by invisibility of endpoint IP addresses and
reliance on DHCP, and consequent inability to automate all firewall settings;
e.g., ACL settings in remote virtual private clouds [32].

a) shrinkage of implicit trust zone by added authentication checks

b) adversary’s (at location 3) lateral movement after credential theft

auth

location 1

location 2

location 3

au
th

location
-based
access
Firewall
penetration

+authentication
trust zone

auth

location 1

location 2

location 3

location
-based
access
Firewall
penetration

+authentication
trust zone

“lateral”
movement

au
th

the
ft

Devices

Devices

Fig. 4: Shrinkage of implicit trust zone by authentication
checks and shrinkage failure after identity-credential theft

on-every-access until the next verification implied by perime-
ter protection, in favor of the never-trust-and-always-verify-
every-access approach.

(ii) enforcement of the least privilege principle, fail-safe
defaults, and auditing a user’s behavior after access [34]. This
aims to limit the effect of perimeter penetration and prevent
“lateral” movement of an adversary through the compromised
network. The adversary is always assumed to be the net-
work [5].

(iii) shrinkage of implicit trust zones by repeated application
of (i) and (ii). Shrinkage reaches the minimum when the
protection perimeter is a single device.

Zero-trust architectures recognize that any network micro-
segmentation and corresponding verification of access at-
tributes upon entry creates a new, smaller implicit trust zone.
Figure 4-a illustrates a smaller implicit trust (green) zone
created by the added authentication (auth) checks performed
by the servers of the light-blue zone. Note that these servers
can be accessed only after the location-based access check of
the light-blue zone is passed. After penetrating the firewall,
the adversary at location 3 must pass the authentication check
of the green zone to access any objects in that zone. However,
Figure 4-b shows that theft of one of the authentication
(auth) credentials by the adversary at location 3 can re-enable
“lateral” movement.

6

a) further shrinkage of trust zone by added admin. authorization checks

b) trust-zone minimization by using LPP principle and device monitoring

auth

location 1

location 2

location 3

auth

theft

location
-based
access
Firewall
penetration

+ admin. authorization
trust zone

auth

location 1

location 2

location 3

auth

theft

location
-based
access

Event set
Device

Firewall
penetration

min zone 1

min zone 2

mon2

Log

Device

+LPP (Auditor)

mo
n1

adminautz

adminautz

Devices

Fig. 5: Repeated trust-zone shrinkage until minimization
using least privilege principle and device monitoring

Figure 5-a illustrates the shrinkage of the implicit authen-
tication (green) trust zone by the addition of authorization
(admin autz) checks for a network-administration zone when-
ever these checks do not depend6 on the stolen authentication
(auth) credential in Figure 4-b. This creates a new smaller trust
(blue) zone and prevents “lateral” movement to it after firewall
penetration and a single authentication credential theft.

Figure 5-b shows that additional enforcement of the least-
privilege principle (LPP) can minimize the blue trust zone
by shrinking it to single-device zones. For example, if these
devices are accessible to an auditor, LPP implies that the
privilege of reading a Log Device is granted only to the
log-analysis application but not to the audit-event (re)setting
application, and Event-Set Device access is granted only to
the audit-event (re)setting application but not to the log-
application. This means that cross-zone attacks between the
audit-log and audit-event (re)setting applications can be pre-
vented. Furthermore, continuous monitoring of these devices
by mon1 and mon2 can detect attack patterns of a penetrated
device against services of other external zones. Hence,“lateral”
movement of an adversary that penetrated a minimized zone
can be limited to that zone.

6Zero-trust architectures do not identify any type of functional or policy
dependencies among verification checks [13]. For example, the “trust algo-
rithms” recommended by NIST’s zero-trust architecture [1], Section 3.3, fail
to identify any such dependencies.

B. Conditions for achieving the main goal

Zero-trust architectures cannot and do not claim that im-
plicit trust zones are resistant to penetration [5], [10].

The explanation of Figure 5-b shows that their main goal
of limiting an adversary’s “lateral” movement in a penetrated
trust zone can be achieved by zone minimization
(i) only if continuous verification checks and application of
least privilege principle (i.e., location+ auth + autz + LPP)
prevent cross-zone attacks; and
(ii) only if continuous monitoring of devices’ behavior in
minimized zones detects cross-zone attacks.

If cross-zone attacks cannot be prevented or detected, then
an adversary’s “lateral” movement cannot be limited, and
the main goal of zero-trust architectures cannot be achieved.
Section V below illustrates this fact.

C. Optimistic implementation assumptions

Our hypothetical example of repeated micro-segmentation
of Figures 4-a and 5 optimistically assumes that all user
endpoint devices have unique identifiers, device locations are
known, network topology and configuration – including high-
value data objects – are easily determined, and all access
to sensitive network APIs is accounted for, authenticated,
and controlled. In short, assignment of the minimum set
of permissions to each micro-segment is possible and, in
principle, least privilege operation could be fully supported.

In practice, however, network micro-segmentation often
fails for several reasons. First, many enterprises suffer from
endpoint-device sprawl7 which diminishes network-topology
visibility [35]. Most user devices do not have unique iden-
tifiers, which makes control of their access to remote pri-
vate clouds difficult to implement. Use of the dynamic host
configuration protocol (DHCP) for remote bring-your-own
devices further increases network insecurity [36]. Furthermore,
incomplete location discovery and movement of high-value
data objects in hybrid clouds [36] further complicates their
assignment to individual micro-segments.

Second, large enterprises can use over ten thousand APIs
to create new software services, applications, and platforms
across their networks. However, few are able to discover and
account for all APIs and when they do, fewer authenticate and
authorize of all access to these APIs, leaving some exposed to
external attacks8. Micro-segmentation aims to control access to
APIs within implicit trust zones, yet few enterprises implement
correct API access authentication and access control based on
strong policies (e.g., role or attribute based access controls)

7A typical enterprise manages about 135,000 endpoint devices with nearly
half (48%) of them remaining undetected on their networks [35].

8API attacks represent one of the most frequently used attack vectors with
roughly 20% of enterprises surveyed [37] being breached during the past year.
The recent attack against FBI’s InfraGuard attack exfiltrated personal data of
about 80K private sector stakeholders (see https://www.pcmag.com/news/fbis-
infragard-us-critical-infrastructure-intelligence-portal-hacked) via an exter-
nally exposed API, whereas the breach against Optus communication service
in Australia exploited an unauthenticated API. Weak authentication protocols
allowing man-in-the-middle attacks to replay tokens/key to access APIs also
contribute to trust zone compromise.

7

rather than merely using web application firewalls [37], [38].
Some also employ continuous external monitoring to detect
– rather than prevent via high assurance methods – API
breaches.

Third, enforcing least-privilege operation for micro-
segments in large enterprises posses substantial technical chal-
lenges. In such an enterprise, ML-based tools must establish
least-privilege micro-segments based on learned hardware and
software configurations and applications’ behavior in multiple
networks. The learning phase of these tools may easily exceed
a couple months; e.g., all software and applications’ behavior
must be learned before micro-segmentation can be performed
and credentials/permissions assigned. At least two challenges
could arise during this phase9. Configuration updates, patches,
and business software releases in agile environments may take
place, and these could cause continuous execution without
ending this phase. Also, limited time learning may miss infre-
quently used enterprise software, such as year-end operations
and once-a-year disaster recovery testing, and fail to assign
its required permissions. This could cause this software to fail
due to lack of permissions.

Absence of ML tool integration with Internet intelligence
feeds may lead to learning malicious micro-segment con-
nections to compromised third-party software suppliers and
even to foreign servers controlled by adversaries. Malicious
connections may be long lasting before discovery; e.g., over
two-hundred eighty days on average [10]. Hence, micro-
segmentation of large enterprise networks to achieve least
privilege operation is often a coarse approximation of reality.

V. ZERO-TRUST ARCHITECTURES ARE UNSOUND

A. Unsoundness

Definition. An implication “A ⇒ B” is unsound if it is
invalid or if the premise A does not hold in cases of interest.
The implication is invalid if there exist cases when A is true
and B isn’t.

Recall that part (ii) of the zero-trust main goal discussed in
Section IV-B represents the implication
“minimization of a implicit trust zone limits lateral adversary
movement only if continuous monitoring of devices’ behavior
in minimized zones detects cross-zone attacks.”
This implication is invalid, and hence unsound, since there
exist cases of minimal implicit trust zones (i.e., single de-
vices) for which continuous monitoring cannot detect cross-
zone attacks. For example, continuous monitoring fails to
detect cross-zone attacks by some malicious firmware. In
Section III-A case b) and Figure 2, we showed that continuous
monitoring of a black-box device’s behavior in a minimized
zone cannot detect the presence of an adversary’s malware in
the device controller’s firmware. Also, in Example 2 below
we show several cases where the adversary’s malware can
launch cross-zone attacks that are undetectable by external
monitoring.

9Personal communication by Daniel Stieger of UBS, Zurich, on November
1, 2022.

Part (i) of the zero-trust main goal discussed in Section IV-B
represents the implication
“minimization of a implicit trust zone limits lateral adversary
movement only if continuous verification checks for granting
access and application of least privilege principle prevent
cross-zone attacks.”
In this section, we show that this implication is unsound since
it is both invalid and its premise fails in cases of interest. In
the first three examples below, we assume that the premise
holds (i.e., all implicit trust zones can be minimized), and
illustrate why the implication is invalid. The fourth and fifth
examples show that the premise fails for critical trust zones,
which cannot be minimized by zero-trust architectures. We
illustrate unsoundness primarily with examples from NIST’s
special publication [1], though these examples apply to all
zero-trust architectures.

Recall that unsoundness of the implications above means
that the main goal of zero-trust architectures cannot be
achieved; i.e., an adversary’s damage cannot be limited to
the (albeit minimized) implicit trust zone it penetrates. We
stress that this does not mean that these architectures are
useless for enterprise networks. However, it does mean that
these architectures cannot serve as security models, as they
fail to counter major security exposures, and should not be
exclusively relied upon to protect any network for critical
applications.

B. Five Examples of Unsoundness

Sandboxing. All zero-trust architectures support applica-
tion “sandboxing” (aka., isolation) on a host using a vari-
ety of constructs, such as containers, enclaves, or isolated
execution environments with hardware support10. Sandboxes
protect applications from each other and other compromised
applications, and represent a host’s micro-segmentation into
separate minimized trust zones. Hence, malware in one zone
cannot infect the other zone. The basic problem is that cross-
zone attacks between two minimized trust zones cannot be
prevented when both depend on a large implicit trust zone
that can be penetrated.
Example 1. Dependency-enabled cross-zone attacks.
Sandboxed applications use input-output functions, including
network access and/or trusted path [39], which make them
dependent on an I/O subsystem comprising millions of lines
of code within an untrusted host OS. Figure 6-a illustrates an
isolated sandbox 1 with exclusive access to I/O device 1 and
an isolated sandbox 2 with exclusive access to device 2. The
two sandboxed applications may contain separate drivers for
their I/O devices; see Figure 6-b. In both cases, malware in one
trust zone can manipulate the I/O hardware of the underlying
host to breach the security of the other trust zone.

The common I/O vulnerabilities and attacks against isolated
applications shown in Section II of reference [40], illustrate

10NIST’s special publication [1], Section 3.2.4, Figure 6, page 17, illustrates
two sandboxed applications in two isolated trust zones of an untrusted host.
Both trust zones depend on a common host OS and host-device firmware.

8

Sandbox
App	2

Sandbox
App	1

Host OS

Sandbox
App	1

device 1

Drivers &
Hardware

Sandbox
App	1

I/O

1 2

Hardware

Sandbox
App	2
Driver	2

Sandbox
App	1
Driver	1

I/O

cross-zone attack cross-zone attack

a) “uses” dependencies on host I/O b) “uses” dependencies on I/O hardware

Host OS

minimized
trust zone 1

minimized
trust zone 2

minimized
trust zone 1

minimized
trust zone 2

device 2 device 1 device 2

Fig. 6: Cross-zone attack enabled by lack of I/O separation

this simple case of unsoundness. For example, some I/O hard-
ware fails to enforce exclusive association of I/O devices with
their sandboxed application, and to selectively separate read-
write permissions for I/O transfers. Other I/O hardware can
selectively associate only I/O bus controllers with sandboxed
applications but not individual devices, and separate read-
write permissions only for bus transfers. Although the most
advanced I/O hardware (e.g., IOMMU, PCIe, and ACS) can
exclusively associate individual devices with their sandboxed
applications and selectively authorize read-write transfers,
their use frequently trades-off correctness assurance of I/O
transfer separation for added performance, particularly in
commodity OSes [40]. Vulnerabilities caused by malware
manipulation of I/O hardware in a penetrated trust zone cause
cross-zone attacks that easily lead to applications’ compromise
despite sandboxing strength.

Other cross-zone attacks, which are enabled by “uses”
dependencies [41], appear between implicit trust zones that
are cyclicly dependent even if these zones are minimized; see
Example 4 and Figure 9 below. Some of these attacks disap-
pear after cyclic dependencies are removed; see Figure 10-b
and c. �

Bring-your-own-device (BYOD). All zero-trust architectures
allow use of remote bring-your-own-device (BYOD) endpoints
in an enterprise network [1], Section 2.2. These devices can
represent minimized implicit trust zones if they have unique
identifiers that cannot be corrupted (e.g., by malware in their
firmware or OS) and persistent cryptographic channels to their
external suppliers; e.g., for secure firmware (FW) updates
and new unique-identifier provisioning on device-ownership
changes, as shown in Figure 7. Assume these conditions can
be satisfied by BYOD endpoints. The Trusted Computing
Group (TCG) has shown how to provide a unique device
identity [42] and maintain persistent cryptographic channels
for updating device firmware, including the device-update en-
gine itself [43], and later attest to the update completion [44],
[45]. Microsoft’s Cider system [46] and its underpinnings [47]
illustrate how to implement TCG’s specifications. For in-
stance, they show how to establish a cryptographic channel
from a BYOD firmware to its external supplier, though this

must assume some local firmware provisioning11. Similar
cryptographic channels can be established between uniquely
identified OSes and applications and their external suppliers;
see Figure 7.

Physical and insider attacks. A significant problem is that
BYODs are subject to physical and insider attacks that can
corrupt their firmware. For example, some USB devices allow
an adversary’s direct access to the firmware of the device’s
micro-controller [50]. An “evil innkeeper” can access a guest’s
device in the guest’s absence, and a second-hand reseller has
possession of a future owner’s device before its delivery; both
can access motherboard firmware and modify the unified ex-
tensible firmware interface [51]. A physical man-in-the-middle
can interdict a device and modify its disk-controller firmware
before the device is delivered to a legitimate owner [52],
[53]. In all cases, device firmware can be re-provisioned with
malicious code and public keys of the remote adversary’s
command-and-control servers. This illustrates Stajano’s long-
standing big stick principle: “whoever has physical access
to a device is allowed to take it over” [54]. However, the
recent Presidential Executive Order [2] assures us that ”[i]f a
device is compromised, zero trust can assure that the damage
is contained;” see page 26646. The next two examples show
that this is not the case even without any physical device
compromise.

Example 2. Cross-zone attacks by malicious firmware.
Assume that a fully minimized implicit trust zone comprises a
single BYOD. Malicious BYOD firmware can subvert verifi-
cation of access attributes when entering a trust zone, thereby
illustrating a more advanced case of unsoundness. Examples
of malicious-firmware use include advanced persistent threats
(APTs), which allow remote adversaries to exploit the lack of
device-firmware integrity to circumvent access controls with-
out having to exploit any physical device access; e.g., see12

APT28 (Fancy Bear with the LoJax attack), APT29 (Cozy Bear
theft of Covid-19 research results), APT41 (Double Dragon’s
large-scale espionage and the recent MoonBounce attack).
How could BYOD firmware behave maliciously? Recall that
non-malicious firmware updates by trusted suppliers [46], [47]
do not guarantee absence of zero-day vulnerabilities in the
updated firmware that can be exploited remotely. OS kernel
code updates do not guarantee that security flaws do not exist
among the millions of lines kernel code which can enable
firmware-vulnerability exploits and malware insertion into

11Local provisioning of BYOD firmware is always necessary [19]. For
example, suppose that a supplier attempts to deliver a device whose firmware
is pre-provisioned with the supplier’s cryptographic channel to a remote user.
However, an adversary can interdict device delivery before it reaches the user,
change the supplier’s (e.g., public) cryptographic key, and – at the very least
– enable a cuckoo attack [48]. This makes the device communicate securely
with the adversary instead of the supplier’s firmware-update server. Similarly,
changes of device ownership [49] and key replacement after loss also requires
local device-firmware provisioning.

12APT28: https://www.cyberscoop.com/lojax-russia-apt28-eset-firmware
APT29: https://www.cyberscoop.com/coronavirus-vaccine-hacking-cozy-bear-
apt29
APT41: https://www.zdnet.com/article/chinese-apt-deploy-moonbounce-
malware-in-uefi-firmware.

9

location 1

location 2

auth

auth

location
-based
access

External
supplier 2
OS update

External
Network

(peer)

peer

interconnect

location 3

BYOD

External
supplier 1
FW update

FW
 secure

channel

OS secure
channel

External
supplier 3
App update

Ap
p

se
cu

re

ch
an

ne
l

firewall

adminautz Devices

Fig. 7: Cross-zone attacks by compromised external sup-
pliers and peer networks

firmware. Also, continuous external monitoring of BYODs can
fail to detect malware presence (as shown in Section III) and
thus cannot prevent possible cross-zone attacks. �

Example 3. Expanded locus of external cross-zone attack.
Assume that each autonomously administered external (e.g.,
supplier, peer) network implements a zero-trust architecture
with minimized trust zones; see the four (gray) minimized trust
zones of Figure 7. Compromised suppliers’ zones can deliver
malware to minimized zones of a customer network illustrating
unsoundness without customer recourse. For example, in the
ShadowHammer (2019) attack, an adversary compromised a
server running ASUS’ live update service and obtained a
valid signature on a malicious firmware update13 for ASUS’
customers. Supply-chain attacks can scale in the number of
compromised suppliers. For instance, a recent ethical hack
against supply chains breached over thirty-five suppliers14.

Zero-trust architectures also allow pairwise interconnection
of autonomously administered networks; e.g., see Section
4.4 of reference [1]. These networks may be connected as
peers, as illustrated in Figure 7, allowing their local users and
services to access remote objects and services located in their
peer networks. Authentication trust in peer-interconnected
networks [55] expands an implicit trust zone with the ad-
ministrative zones of all its peers and some of these peers’
networks. An adversary who impersonates a legitimate user

13https://eclypsium.com/2019/04/23/shadowhammer-and-the-firmware-
supply-chain/

14Elisabeth Montalbano. Supply-Chain Hack Breaches 35 Compa-
nies Including PayPal, Microsoft, Apple. In TreatPost, Feb. 2021.
https://threatpost.com/supply-chain-hack-paypal-microsoft-apple/163814/

of an external network by compromising the user’s credentials
can launch a cross-zone attack against a peer network. The
only recourse available to a peer network is to lower all remote
users’ (and hence adversary’s) permissions to its local objects
and services proactively, since it cannot distinguish legitimate
from compromised remote users [1]. However, this cannot pre-
vent new cross-zone attacks, since the adversary impersonating
a legitimate user will get some illegitimate access to objects
and services of the peer network, illustrating unsoundness.
Lowered permissions will also deny some remote legitimate
users’ access in the peer network illustrating incompleteness.

How large is the locus-of-attack expansion? When all ex-
ternal network configurations are known, the expansion is
linear in the number of external suppliers, and quadratic in
the number of pairwise-interconnected peers15. �

Administrative perimeter. All enterprise networks require
the protection of an administrative network perimeter that sets
security policies and initializes access control decisions. For
example, Section 3, page 4, Figure 2, of the NIST’s zero-
trust architecture [1] recognizes the need for an administrative
network perimeter in all network security decisions; viz., its
policy decision point. However, many network architectures
fail to recognize the critical importance of minimizing this
perimeter’s large implicit trust zone: penetration of any admin-
istrative perimeter allows unfettered “lateral” adversary access
to network resources without recourse. For example, past
penetrations of poorly protected MS Windows administrative
perimeter (e.g., by exploiting the long-time vulnerable “pass
the hash” mechanism16) fully compromised US Office of Per-
sonnel Management and other government sensitive databases
in 2013. The Solar Winds attack of 2019 has vividly illustrated
the magnitude of the security problem faced by not minimizing
administrative network perimeters.
Example 4. Failure to minimize critical administrative zones.

Function separation is not micro-segmentation. Past separa-
tion of administrative functions into implicit trust zones distin-
guishes security administrator and auditor functions and places
them in a checks-and-balances relationship, which minimizes
trust [56], [57]. This differs from micro-segmentation of ad-
ministrative functions since enforcement of the least-privilege
principle is insufficient for implementing checks-and-balances
relationships or other Separation of Duty policies (SoD) [58];
see Figure 8. Although this principle helps minimize trust
zones (see auditor example of Section IV), it isn’t always
necessary for administrative-function separation.

Administrative-function separation creates “uses” depen-
dencies [41] among security functions and policies17. For in-
stance, system-administrator functions are separated from cer-
tificate authority functions, which are partitioned into separate

15In Section IV-C we optimistically assumed that micro-segmentation can
address endpoint-device and API sprawl. However, if a peer network includes
unaccounted for devices and APIs, their external suppliers are unknown, and
defense against all supply-chain attacks [2], [3] becomes impossible.

16Microsoft’s “pass-the-hash” mechanism predates the LanMan 1.4 design
in 1991. Microsoft finally deprecated this mechanism over two decades later.

17See their definitions in the Common Criteria [13].

10

SoD

Certificate
Authority

Private-Key
recovery

Certificate
Manager

DBMS

OS kernel

System
Programmer

SoD =/= LPP

Log
analysis

Event
(re)set

Security
Admin. Auditor

SoD

LPP

Legend: X à Y: a security property of X depends on a security property of Y
e.g., “uses” dependencies among security function and policies

X ßà Y: a cyclic dependency

Fig. 8: Dependency graph among administrative zones

certificate manager and private-key recovery functions. This
separation establishes “uses” dependencies of certificate man-
ager and private-key recovery functions on the certificate au-
thority and of the certificate authority on security administrator
functions. The private-key recovery functions also depend
on a database management system (DBMS) for private key
archival and recovery, which in turn depends on the system’s
OS-kernel for setting its permissions. When the source code
implementing these functions is compiled/assembled/linked, a
new administrative function – a trusted systems programmer
[56], [57] – is required to assure that binary tools are malware
free18. All other administrative functions depend on system
programmer functions. Since each separate administrative
function defines an implicit trust zone, a security function and
policy dependency graph is defined on these zones, as shown
in Figure 8.

Trust minimization on dependencies graphs. Administrative
trust-zone minimization has to be performed on the depen-
dency graphs. However, neither trust-zone separation nor min-
imization on dependency graphs are defined by any zero-trust
architectures, including NIST’s [1]. Hence, the implicit-trust-
zone-minimization premise of zero-trust architectures cannot
hold for critical administrative zones.

Cyclic-dependency removal. An additional complexity in-
troduced by trust minimization on dependency graphs is that
dependencies can be cyclic; e.g., a security property of trust
zone A depends on a security property of trust zone B and
(perhaps another) security property of B depends on some
security property of A; see Figure 9-a. For instance, a cyclic
dependency arises between an implicitly trusted SA zone and a
server’s OS kernel zone: the OS kernel depends on SA for the
settings of its permissions and SA depends on the OS kernel
for enforcing its permissions; see Figure 8. Also, note that a
single-zone penetration can compromise both zones A and B;
see Figure 9-b.

18Systems programmer can use diverse double compilation [59] and simple
binary-comparison tools to detect malware-compromised compiler, assembler,
or linker code [60].

Trust
Zone B

cyclic
dependency

cyclic
dependency

cyclic
dependency

a) cyclic dependency

b) penetration of either A or B compromises both
Minimization? A ‘large’, B ‘small’? B ‘large’, A ‘small’? A, B nearly ‘equal sized’?

Trust
Zone A

Trust
Zone B

Trust
Zone B

Trust
Zone A

Trust
Zone A

Fig. 9: Cyclic dependency and zone-crossing attacks

a) “sandwiching” B between A1 and A2

Trust
Zone A1

Trust
Zone A2

Trust
Zone B

b) Penetration of A1 compromises
neither B nor A2

Trust.
Zone A1

Trust
Zone A2

Trust
Zone B

c) Penetration of B compromises
A1 and not A2

Trust
Zone A1

Trust
Zone A2

Trust
Zone B

d) Penetration of A2 compromises
both A1 and B

Trust
Zone A1

Trust
Zone A2

Trust
Zone B

Fig. 10: Cyclic-dependency removal & cross-zone attacks

Removal of cyclic dependencies is important because it can
decrease the number of cross-zone attacks; see Figure 10-b and
c. This is accomplished by re-design that converts dependency
cycles into directed acyclic graphs of dependencies. Classic
software engineering techniques, such as “sandwiching,”19

have been used to re-design services and convert dependency
cycles into directed acyclic dependency graphs; as illustrated
in Figure 10-a. Whether implicit trust zones are minimized
or not, re-designing trust zones to convert cyclic trust-zone
dependencies into directed acyclic graphs can prevent some
cross-zone attacks; see Figure 10-b and c, but not d. Hence,
such conversion decreases the number of cross-zone attacks.

We note that zero-trust architecture, including NIST’s [1],
lack criteria for both minimization of cyclically dependent
trust zones and cyclic dependency removal, further illustrating
why the implicit-trust-zone-minimization premise can fail. �

Example 5. Failure to minimize critical application zones.
Zero-trust architectures fail to recognize that many implicit
trust zones of network applications require minimization prin-
ciples that differ from the least privilege principle of zero

19Parnas [41] introduced “sandwiching” to convert cyclic dependencies into
directed acyclic graphs in software design. Whenever a module A depends
on module B and B depends on A, module A can be redesigned to comprise
two sides of a “sandwich,” modules A1 and A2, such that A1 depends on A2
and B, and B depends on A2; see Figure 10-a. Sandwiching has been used in
secure system design beginning with the Multics kernel design project [61].

11

trust. For example, traditional business applications define
implicit trust zones and minimize trust by implementing SoD
principles and policies [58]; e.g., by implementing checks-and-
balances between implicit trust zones, multi-zone agreement
for taking critical decisions, and exclusion of trust zones to
avoid conflicts of interest. Other applications minimize trust by
performing secure multi-zone computations in face of active
adversaries. The trust-zone minimization premise of zero-trust
architectures fails for many business applications. �

It is unsurprising that zero-trust architectures cannot mini-
mize critical application zones when minimization principles
required differ from those of zero-trust architectures. However,
it is surprising that the Presidential Executive Order and its
Office of Management and Budget (OMB) implementation [2],
[3] miss requiring these principles since they have been widely
used in government applications for many decades; e.g., SoD
principles and policies. However, they emphasize zero trust
use of only lower-level access controls, such as role- and
attribute-based access controls, which do not require SoD use,
for instance.

VI. ZERO-TRUST ARCHITECTURES ARE INADEQUATE FOR
PERVASIVE GOVERNMENT USE

The question of whether zero-trust architectures are ade-
quate for pervasive use in network security arises naturally.
In particular, can these architectures satisfy the requirements
of the recent Presidential Executive Order 14028 [2]? This
document (i.e., Section 10, paragraph (k)) relies on NIST’s
zero-trust architecture [1], calls it a “security model,” and
mandates its adoption for government (see page 26636). The
accompanying OMB memorandum M-22-09 elaborates the
adoption requirements by the end of FY 2024 [3]. While
a complete analysis of which requirements of the Executive
Order and OMB memorandum can be supported or are pre-
cluded is beyond the scope of this report, it is clear that zero-
trust architectures are inadequate for the government mandate,
for two reasons. They fail to fully satisfy the government
mandate, and hence new requirements must be introduced;
and they preclude implementing some others requirements of
the mandate. We illustrate a few of these inadequacies.

The following five requirements cannot be satisfied.
Requirement 1: isolate computing environments.
Zero-trust enforcement implies that computing environ-

ments can be isolated only if they are in different implicit
trust zone. Examples 1) – 3) above show that even if different
implicit trust zones are minimized they cannot prevent cross-
zone attacks that violate computing environment isolation.

Requirement 2: if a device is compromised, zero trust can
assure that the damage is contained.

Zero-trust enforcement implies that, to contain the damage
caused by a device compromise, the implicit trust zone of a
device must be fully minimized; i.e., it must contain that single
device and nothing else. However, Examples 2 and 3 above
show that cross-zone attacks can be launched by compromised
devices even if their trust zones are fully minimized.

Requirement 3: understand devices’ operation and their
security posture when granting access to resources.

Zero-trust enforcement can only guarantee that a device
belongs to its fully minimized trust zone. However, device
operation and its security posture cannot be known and un-
derstood when granting access to resources on that device,
since the device’s firmware could have been compromised
by undetected malware. Examples 2 and 3 above show that
malware freedom of device firmware cannot be established by
implicit trust zone minimization.

Requirement 4: audit of trust relationships.
Zero-trust enforcement cannot audit any trust relationships

beyond those implied by implicit trust zone minimization; see
Section IV. Other relationships among critical trust zones can-
not be identified and hence cannot be audited; e,g., Examples
4 and 5 above show that “uses” dependencies that are essential
to minimizing critical trust zones are undefined and hence are
non-auditable.

Requirement 5: mandate that users log in directly to appli-
cations to enable a bare minimum of access needed to perform
their job.

Other than prevention single sign-on to multiple applications
of an enterprise, which may be a user inconvenience, this
mandate fails to satisfy its intended purpose of least-privilege
access. Although zero-trust enforcement can guarantee direct
application login by users (e.g., via multi-factor authentica-
tion), it cannot “enable a bare minimum of access needed to
perform their job.” This is because it fails to support trusted
path to applications after login. That is, a remote adversary
can attack a user’s endpoint system after the user’s secure
application login, and surreptitiously modify application com-
mands to corrupt user inputs and display unauthentic outputs.
This can trigger unnecessary (e.g., maximum) users’ access
while performing their job, despite secure application login.
Moreover, without trusted path there is no accountability of
“who, what, when, and where” performed an access [2].

It is astonishing that all zero-trust architectures, including
NIST’s, and the Presidential Executive Order [2], [3] miss the
fundamental need for trusted path after four decades since
its introduction in US Government security standards20 and
enforcement in past commercial-product evaluations.

Enforcing zero-trust precludes implementing the following
three trust-establishment requirements (i.e., 6 – 8 below),
among others. The basic reason for this is that trust estab-
lishment excludes zero trust; see Section III-C.

Requirement 6: establish “security and integrity of ‘critical
software’ – software that performs functions critical to trust.”

Zero-trust enforcement implies that functions critical to
trust must be in some implicit trust zones. Even if trust
zone isolation were possible, the security and integrity of
functions within a zone cannot possibly be (e.g., formally)
proven once and trusted afterwards, since this is ruled out

20Trusted path was introduced by the NSA for commercial systems eval-
uations in 1983 [12]. Lack of trusted path has legitimately been called the
“ultimate insult” to end-to-end network security [39], [62].

12

by the continuous verification requirement (i) of Section IV.
The approach of (formally) verify-once-and-trust-on-every-
access afterwards, which has been used to assure security-
, separation-, and micro-kernels for decades, is explicitly
rejected by zero-trust architectures21. This rejection is further
emphasized by the justified assumption that any trust zone is
penetrable. Thus, an adversary can penetrate any trust zone that
encapsulates functions critical to trust and corrupt the security
and integrity of “critical software” implementing them.

Requirement 7: establish “trusted source code supply
chains.”

Zero-trust enforcement in an enterprise network cannot
establish that any of the enterprise’s external supply chains
are trusted. This is clearly a trust-establishment requirement
which excludes zero trust.

Requirement 8: ensure and attest, to the extent practicable,
to the “integrity and provenance of open-source software.”

Zero-trust enforcement in an enterprise network rules out
satisfying this requirement. This is because ensuring the
integrity of open-source software requires source-code (e.g.,
formal) proofs, and provenance attestation requires signature-
verification checks that must be isolated in a trust zone and
(e.g., formally) proven; see similar requirement for attesting
firmware-update provenance in Appendix B. However, both
requirements imply correctness assurance of some software
content of an implicit trust zone, which is explicitly ruled out
by zero-trust implementations; see Requirement 6 above.

Despite other inadequacies that are similar to the eight
noted above, the Presidential Executive Order [2] and OMB
memorandum [3] mandate zero trust, which excludes trust es-
tablishment. Nevertheless, these documents attempt to remedy
some zero-trust inadequacies while missing many others, some
of which are identified herein. These inadequacies are also
relevant to non-government enterprises.

VII. LOW DEFENSE AND GOOD RECOVERY VALUE

A. Addressing known weaknesses
Zero-trust initiatives have addressed some glaring weak-

nesses of enterprise-network security. These include user iden-
tification and authentication via multi-factor authentication,
removal of single corporate VPN perimeters and replacement
with tailored remote desktop protocols (e.g., of virtual desktop
infrastructures) for access to specific corporate resources.
Protection perimeters and their firewalls are removed, network
zones are merged and then micro-segmented to define implicit
trust zones with decreased, least-privilege access. All these
improvements have been known long before the zero trust
buzzword was coined, and yet their belated deployment has
not prevented many common security breaches, much less
advanced persistent threats.

B. Low but non-zero defense
A recent IBM-Ponemon Institute survey [10] examined

537 breaches in 17 countries and 17 world regions, covering

21In contrast, trust establishment (Section II-B), which excludes zero trust,
relies on different levels of assurance for security properties.

Data Source: 2021 IBM Security and Ponemon Institute survey
- 537 security breaches, 17 countries & regions, 17 industries

$1.76 M

avg. cost
of a breach

zero trust
deployment

No ZT

$5.04 M

Early stage

$4.38 M

Middle stage

$3.71 M

Mature ZT

$3.28 M

65%15%20%

avg. cost
savings$2.14 M

sec. automation
(AI/ML) zero trust

$1.76 M

security
analytics
$1.32 M

cloud
migration
$1.66 M

encryption
$1.25 M

local vs.
remote
access
$1.07 M

- average-cost savings of zero trust versus other security measures

zero trust

AI/ML

$2.90 M
$2.14 M

Fig. 11: Reduced cost of recovery from security breaches

17 major industries. They ranged from the most common
(e.g., exploits of compromised credentials, phishing, cloud
misconfiguration, and vulnerable third-party software) to the
most costly; e.g., email compromises, insider attacks, social
engineering attacks and data/device losses. None were pre-
vented by mature zero-trust implementations and their average
recovery costs were substantial; i.e., $3.28 M average cost per
breach; see Figure 11. The consequences of these findings
are predictable. Much like an incomplete patch to a known
software vulnerability that does not cover some possible
exploits, zero-trust architectures encourage an adversary to
take advantage of vulnerabilities they fail to remove.

We stress that zero-trust architectures do not claim to and
cannot provide assurance of penetration resistance for any
implicit trust zones even if these zones are correctly defined
and minimized, as optimistically assumed in Section IV-C.
This suggests that future zero-trust architectures will continue
to offer only low-security value. Nevertheless zero-trust ini-
tiatives have increased industry security awareness and about
83% of security and risk professionals agree that zero-trust
architecture is essential to their organizations [6]. This is un-
surprising given the elevation of the zero-trust buzzword to an
industry and government slogan: a Google search on the “zero
trust” phrase identified millions of citations. However, the
projected investments in zero-trust initiatives appear to paint
a more realistic picture. The estimated investment in these
initiatives by 2025 is $1.6B compared to $233B of projected
expenditures in information security and risk management [6].
Thus, the zero-trust investment estimate represents a very
small fraction (i.e., 0.68%) of these expenditures, reflecting
the limited value of the zero-trust initiatives.

C. Reduced recovery cost after network compromise
According to the same IBM-Ponemon Institute survey [10],

the significant advantage of zero-trust deployment is in re-
ducing recovery costs from security breaches. For example,
Figure 11 shows that the average cost of a security breach
after “mature” zero-trust deployment (i.e., $3.28M) is much
lower than those incurred when zero trust is not deployed at
all (i.e., $5.04M). However, this average-cost reduction (i.e.,

13

$1.76M) is significantly lower than that obtained by security
automation and artificial intelligence (AI)/machine learning
(ML) measures in containing security incidents and intrusion
attempts (i.e., $2.14M). Although this cost reduction is only
marginally higher than migrating to hybrid-cloud security
($1.66M), it is substantially higher than that obtained by
using standard security analytics (i.e., $1.32M) and encryption
($1.25M). Also, the recovery-cost savings of mature zero trust
are much higher than those realized by local-only network
access; i.e., the cost reduction of local access is $1.07M higher
than than of remote access.

VIII. SUMMARY

With millions Google Search references to date, zero trust
has become a government and industry slogan, which conveys
an achievable security goal. However, scrutiny of trust and
zero trust definitions shows that “zero trust architectures”
have nothing to do with the unachievable notion of zero
trust in security. Ignoring its hyperbolic use of the zero trust
qualifier, a zero-trust architecture is an improvement over the
“no defense” state of network security before its introduction.
However, the improvement is relatively small. All available
evidence shows that zero-trust architectures have low defense
value, and their goal of limiting effects of inevitable security
compromise is often unmet. Admittedly these architectures do
not offer any correctness evidence for their verification and
monitoring claims, which naturally lowers development and
operational costs. Zero-trust architectures could never serve
as security models as they fail to meet their mail goal and
inadequate for pervasive use in critical networks, not just
government’s. Nevertheless, they can reduce recovery costs
after inevitable network compromises.

Mandating adoption of these architectures in government
networks seems surprising, particularly since trust establish-
ment measures, which exclude zero trust, are required to
compensate for some basic zero trust inadequacies, while
missing the ones identified here. However, mandating these
architectures has some practical advantages. They maintain
backward compatibility with existing (insecure) network, sys-
tem, and application software, which is intended facilitate
deployment without major disruption. They rely on continuous
monitoring of implicitly trusted zones aiming to detect security
breaches early thereby decreasing the delay to begin recovery.

Adoption of zero-trust architectures reinforces a past market
preference: low-assurance networks that incur recurrent recov-
ery costs after multiple penetrations have been commercially
preferable to high-assurance alternatives that could incur one-
time high development costs but prevent most penetrations.
This may change in the future if trust establishment measures
are adopted since they provides a better cost-benefit balance.
Trust establishment could decrease one-time development
costs by applying high assurance only to selected components
while adding some recurrent risk-mitigation and deterrence
costs. This would allow more flexible cost allocation.

Acknowledgments
Earlier versions of this report have received sympathetic

readings and useful suggestions from David Basin, Mads Dam,
Kevin Foltz, Tim Grance, Brent Kang, Rick Kuhn, Adrian
Perrig, Vyas Sekar, William Simpson, and Nickolai Zeldovich.
Whatever clarity this report has is due in no small measure
to comments received from Frank Stajano, Bryan Parno, and
Miao Yu. However, responsibility for all its content rests with
the author.

REFERENCES

[1] National Institute of Standards and Technology, “Zero Trust Architec-
ture,” 2020.

[2] White House, “Executive Order No. 14028 – Improving
the Nation’s Cybersecurity,” May 2021. [Online]. Avail-
able: https://www.whitehouse.gov/briefing-room/presidential-actions/
2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

[3] S. Young, “Moving the U.S. Government Toward Zero Trust
Cybersecurity Principles,” Jan 2022. [Online]. Available: https:
//www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf

[4] Department of Defense, “DoD Zero Trust Reference Architecture,”
Tech. Rep., March 2021. [Online]. Available: https://dodcio.defense.
gov/Portals/0/Documents/Library/(U)ZT RA v2.0(U) Sep22.pdf

[5] National Security Agency, “Embracing a Zero
Trust Security Model,” 2021. [Online]. Avail-
able: https://media.defense.gov/2021/Feb/25/2002588479/-1/1/0/CSI
EMBRACING ZT SECURITY MODEL UOO115131-21.PDF

[6] L. Columbus, “Zero-Trust Trends for 2022,” in VentureBeat, January
20, 2022. [Online]. Available: https://venturebeat.com/2022/01/20/zero-
trust-trends-for-2022

[7] ——, “How cybersecurity vendors are misrepresenting zero
trust,” in VentureBeat, August 22, 2022. [Online]. Avail-
able: https://venturebeat.com/security/how-cybersecurity-vendors-are-
misrepresenting-zero-trust/

[8] Z. Malekos, E. Lostri, and J. Lewis, “The hidden costs of cybercrime,”
Dec 2020. [Online]. Available: https://www.mcafee.com/enterprise/en-
us/assets/reports/rp-hidden-costs-of-cybercrime.pdf

[9] VentureBeat Staff, “Report: US businesses experience 42 cyberattacks
per year.” Sept. 20 2022. [Online]. Available: https://venturebeat.com/
security/report-u-s-businesses-experience-42-cyberattacks-per-year/

[10] IBM Security and Ponemon Institute, “Cost of a data breach report,”
2022. [Online]. Available: https://www.ibm.com/security/data-breach

[11] V. D. Gligor, “Dancing with the adversary: A tale of wimps and giants
(article and transcript of discussion),” in Proc. of the 2014 Security
Protocols Workshop, Cambridge, UK, no. LNCS 8809. Springer, 2014.

[12] NSA, National Computer Security Center, “Trusted computer system
evaluation criteria (The Orange Book),” 1983, DoD 5200.28-STD.
[Online]. Available: http://csrc.nist.gov/publications/history/dod85.pdf

[13] Common Criteria, “Common criteria for information technology
security evaluation part 2: Security functional components,” pp. 1–321,
2009. [Online]. Available: https://www.commoncriteriaportal.org/files/
ccfiles/CCPART2V3.1R3-markedchanges.pdf

[14] V. Gligor and J. Wing, “On the foundations of trust in networks of
humans and computers (also see transcript of discussion),” in Proc. of
the 2011 Security Protocols Workshop, Cambridge, UK, no. LNCS 7114.
Springer, 2012.

[15] V. D. Gligor and F. Stajano, “Assuring safety of asymmetric social pro-
tocols (also see transcript of discussion),” in Proc. of the 2017 Security
Protocols Workshop, Cambridge, UK, no. LNCS 10476. Springer, 2017.

[16] E. Fehr, “The economics and biology of trust,” Journal of the European
Economics Association, vol. 7, April-May 2009.

[17] M. T. Dashti and D. A. Basin, “Tests and Refutation,” in Proc. of
Automated Technology for Verification and Analysis - ATVA, ser. LNCS
10482. Springer, 2017.

[18] C. Raiu, “Commentary in Equation: The Death Star of the Malware
Galaxy,” in Kaspersky Lab, Feb 2015. [Online]. Available: https:
//securelist.com/equation-the-death-star-of-malware-galaxy/68750/

[19] V. Gligor, “What’s Necessary to Establish Malware Freedom Uncondi-
tionally? (long version),” in Presentation at the IEEE Foundations of
Computer Systems Workshop, Boston, Mass., June 2020.

14

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_RA_v2.0(U)_Sep22.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_RA_v2.0(U)_Sep22.pdf
https://media.defense.gov/2021/Feb/25/2002588479/-1/1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF
https://media.defense.gov/2021/Feb/25/2002588479/-1/1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF
https://venturebeat.com/2022/01/20/zero-trust-trends-for-2022
https://venturebeat.com/2022/01/20/zero-trust-trends-for-2022
https://venturebeat.com/security/how-cybersecurity-vendors-are-misrepresenting-zero-trust/
https://venturebeat.com/security/how-cybersecurity-vendors-are-misrepresenting-zero-trust/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf
https://venturebeat.com/security/report-u-s-businesses-experience-42-cyberattacks-per-year/
https://venturebeat.com/security/report-u-s-businesses-experience-42-cyberattacks-per-year/
https://www.ibm.com/security/data-breach
http://csrc.nist.gov/publications/history/dod85.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3 - marked changes.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3 - marked changes.pdf
https://securelist.com/equation-the-death-star-of-malware-galaxy/68750/
https://securelist.com/equation-the-death-star-of-malware-galaxy/68750/

[20] V. D. Gligor and M. Woo, “Establishing Software Root of Trust
Unconditionally,” in Proceedings of the NDSS, San Diego, CA. Springer,
Feb 2019.

[21] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010. [Online].
Available: http://dx.doi.org/10.3233/JCS-2009-0393

[22] C. Raiu, “Where are all the A’s in APT?” in Virus Bulletin, 2018.
[Online]. Available: https://www.virusbulletin.com/blog/2018/09/where-
are-all-apt

[23] R. Joyce, “Disrupting nation state hackers,” USENIX Enigma
Conference, January 2016. [Online]. Available: https://www.youtube.
com/watch?v=bDJb8WOJYdA

[24] M. Guri and Y. Elovici, “Bridgeware: The Air-Gap Malware,” in Comm.
ACM, vol. 61, April 2018.

[25] L. Columbus, “De-mistifying zero-trust network access 2.0,” in
VentureBeat, July 8, 2022. [Online]. Available: https://venturebeat.com/
2022/07/08/demystifying-zero-trust-network-access-2-0/

[26] B. Lampson, “Usable Security: How to Get It,” in Comm. ACM, Nov
2009.

[27] F. B. Schneider, “Beyond hacking: An SOS!” in 2010 ACM/IEEE 32nd
International Conference on Software Engineering, vol. 1, 2010, pp.
2–2.

[28] I. Ivan Damgård, “A ”proof-reading” of Some Issues in Cryptography,”
in Proceedings of International Coll. on Automata, Languages and
Programming (ICALP), ser. LNCS, vol. 4596. Springer, 2007. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-319-12400-
1 12

[29] D. Gollmann, “Commentary in Transcript of Discussion: Dancing with
the Adversary - A Tale of Wimps and Giants,” in Proceedings of the
2014 International Workshop on Security Protocols, Cambridge, UK,
ser. LNCS, vol. 8809. Springer, 2014.

[30] V. D. Gligor, “On the security limitations of virtualization and how
to overcome them (also see transcript of discussion),” in Proc. of the
2010 Security Protocols Workshop, Cambridge, UK, no. LNCS 7061.
Springer, 2014.

[31] Butler W. Lampson, “Computer security in the real world,” in Proc.
of 16th Annual Computer Security Applications Conference, Dec 2000.
[Online]. Available: https://www.acsac.org/2000/papers/lampson.pdf

[32] D. Burton, “What are the most common causes of firewall
misconfigurations?” in Akamai Blog, November 16, 2020.
[Online]. Available: https://www.akamai.com/blog/security/the-dangers-
of-firewall-misconfigurations-and-how-to-avoid-them

[33] L. Columbus, “How zero trust can help battle identities under
siege,” in VentureBeat, September 14, 2022. [Online]. Avail-
able: https://venturebeat.com/security/how-zero-trust-can-help-battle-
identities-under-siege/

[34] J. Saltzer and M. Schroeder, “The protection of information in computer
systems,” in Proceedings of IEEE, Sept 1975.

[35] L. Columbus, “Struggling with endpoint security? How to get it right,”
in VentureBeat, July 13, 2022. [Online]. Available: https://venturebeat.
com/2022/07/13/struggling-with-endpoint-security-how-to-get-it-right/

[36] ——, “Forrester’s best practices for micro-segmentation,” in
VentureBeat, July 20, 2022. [Online]. Available: https://venturebeat.com/
2022/07/20/forresters-best-practices-for-zero-trust-microsegmentation/

[37] T. Keary, “94% of survey respondents experienced API security
incidents in 2021,” in VentureBeat, August 22, 2022. [Online].
Available: https://venturebeat.com/security/api-security-incidents/

[38] M. Isbitski, in MythBusters API Edition: Zero Trust and Its
Limitations for API Security. Salt Security, April 20, 2021. [Online].
Available: https://salt.security/blog/mythbusters-api-edition-zero-trust-
and-its-limitations-for-api-security?

[39] Z. Zhou, V. Gligor, J. Newsome, and J. McCune, “Building verifiable
trusted path on commodity x86 computers,” in Proceedings of the 2012
IEEE Symposium on Security and Privacy. IEEE, 2012.

[40] M. Yu, V. Gligor, and L. Jia, “An I/O separation model for formal
verification of kernel implementations,” in Proceedings of the 2021 IEEE
Symposium on Security and Privacy. IEEE, 2021.

[41] D. Parnas, “Some hypotheses about the ”uses” hierarchy for operating
systems,” March 1976, research Report BS I 76/1.

[42] Trusted Computing Group, “Hardware Requirements for a
Device Identifier Composition Engine,” 2018. [Online]. Available:
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-
Requirements-for-Device-Identifier-Composition-Engine-r78 For-
Publication.pdf

[43] ——, “TCG Guidance for Secure Update of Software
and Firmware on Embedded Systems,” 2020. [Online].
Available: https://trustedcomputinggroup.org/wp-content/uploads/TCG-
Secure-Update-of-SW-and-FW-on-Devices-v1r72 pub.pdf

[44] ——, “Implicit Identity Based Device Attestation,” 2018. [Online].
Available: https://trustedcomputinggroup.org/resource/implicit-identity-
based-device-attestation/

[45] ——, “Symmetric Identity Based Device Attestation,” 2020. [Online].
Available: https://trustedcomputinggroup.org/wp-content/uploads/TCG
DICE SymIDAttest v1 r0p95 pub-1.pdf

[46] M. Xu, M. Huber, Z. Sun, P. England, M. Peinado, S. Lee, A. Marochko,
D. Mattoon, R. Spiger, and S. Thom, “Dominance as a new trusted
computing primitive for the internet of things,” in Proc. of IEEE
Symposium on Security and Privacy, 2019.

[47] P. England, R. Aigner, K. Kane, A. Marochko, D. Mattoon, R. Spiger,
S. Thom, and G. Zaverucha, “Device identity with DICE and RIOT:
Keys and Certificates,” Microsoft, Tech. Rep. MSR-TR-2017-41,
September 2017.

[48] B. Parno, “Bootstrapping trust in a trusted platform,” in Proceedings of
the third conference on Hot topics in security. USENIX Association,
2008, pp. 1–6.

[49] E. Palmer, T. Visegrady, and M. Osborne, “Ownership and control of
firmware in open compute project devices,” IBM 2018. [Online].
Available: https://www.opencompute.org/documents/ibm-white-paper-
ownership-and-control-of-firmware-in-open-compute-project-devices

[50] A. Greenberg, “Why the security of usb is fundamentally broken,” in
WIRED, July 2014. [Online]. Available: https://www.wired.com/2014/
07/usb-security/

[51] Kaspersky Lab, “CosmicStrand: the discovery of a sophisticated UEFI
firmware rootkit,” in Kaspersky Lab, July 2022. [Online]. Available:
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/

[52] L. Mearian, “There’s no way of knowing if the NSA’s spyware is on
your hard drive,” Computerworld, vol. 2, 2015.

[53] Kaspersky Lab, “Equation: The Death Star of the Malware Galaxy,” in
Kaspersky Lab, Feb 2015. [Online]. Available: https://securelist.com/
equation-the-death-star-of-malware-galaxy/68750/

[54] F. Stajano, “Security for Ubiquitous Computing,” in John Willey and
Sons, no. ISBN 0-470-84493-0, Feb 2002.

[55] V. D. Gligor, S. Luan, and J. Pato, “On inter-realm authentication in
large distributed systems,” in Proc. of the IEEE Symposium on Security
and Privacy, and J. of Computer Security, Vol. 2, no. 2-2,1993, 1992.

[56] et al.. Hecht, Matthew, “Unix without the superuser,” in Proceedings of
1987 Summer USENIX Technical Conference and Exhibition, Phoenix,
AZ. Usenix, June 1987.

[57] NSA, National Computer Security Center, “A guideline for under-
standing trusted facility management,” NCSC-TG-015, Library No. S-
231,439.

[58] V. Gligor, S. Gavrila, and D. Ferraiolo, “On the formal definition of
separation of duty policies and their composition,” in Proc. of the IEEE
Symp. on Security and Privacy, 1998, pp. 172–183.

[59] Wheeler, David, “Fully Countering Trusting Trust through Diverse
Double-Compiling,” in PhD Thesis, George Mason University, Fairfax,
VA, 2009. [Online]. Available: https://hdl.handle.net/1920/5667

[60] K. Thompson, “Reflections on trusting trust,” in Comm. ACM, vol. 27,
no. 8, Aug 1984.

[61] M. Schroeder, D. D. D. Clark, and J. Saltzer, “The Multics kernel design
project,” ACM Operating Systems Review, vol. 11, Nov 1977.

[62] D. Clark and M. Blumenthal, “The end-to-end argument and application
design: the role of trust,” in Federal Communications Law Journal,
vol. 63, no. 2, Feb 2011.

[63] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Proceedings
of the 30th Annual Cryptology Conference, vol. LNCS 6223. Springer,
2010.

[64] M. Wallfish and A. Blumberg, “Verifying computations without re-
executing them,” in Comm. ACM, vol. 58, no. 2, Feb 2015.

[65] P. Dasgupta, “A Matter of Trust: Social Capital and Economic
Development,” in Annual Bank Conference on Development Economics
(ABCDE), Seoul, June 2009. [Online]. Available: https://www.econ.
cam.ac.uk/people-files/emeritus/pd10000/publications/09/abcde09.pdf

[66] G. Akerlof and R. Schiller, in Phishing for Phools – The Economics of
Manipulation and Deception. Princeton University Press, 2015.

15

http://dx.doi.org/10.3233/JCS-2009-0393
https://www.virusbulletin.com/blog/2018/09/where-are-all-apt
https://www.virusbulletin.com/blog/2018/09/where-are-all-apt
https://www.youtube.com/watch?v=bDJb8WOJYdA
https://www.youtube.com/watch?v=bDJb8WOJYdA
https://venturebeat.com/2022/07/08/demystifying-zero-trust-network-access-2-0/
https://venturebeat.com/2022/07/08/demystifying-zero-trust-network-access-2-0/
https://link.springer.com/chapter/10.1007/978-3-319-12400-1_12
https://link.springer.com/chapter/10.1007/978-3-319-12400-1_12
https://www.acsac.org/2000/papers/lampson.pdf
https://www.akamai.com/blog/security/the-dangers-of-firewall-misconfigurations-and-how-to-avoid-them
https://www.akamai.com/blog/security/the-dangers-of-firewall-misconfigurations-and-how-to-avoid-them
https://venturebeat.com/security/how-zero-trust-can-help-battle-identities-under-siege/
https://venturebeat.com/security/how-zero-trust-can-help-battle-identities-under-siege/
https://venturebeat.com/2022/07/13/struggling-with-endpoint-security-how-to-get-it-right/
https://venturebeat.com/2022/07/13/struggling-with-endpoint-security-how-to-get-it-right/
https://venturebeat.com/2022/07/20/forresters-best-practices-for-zero-trust-microsegmentation/
https://venturebeat.com/2022/07/20/forresters-best-practices-for-zero-trust-microsegmentation/
https://venturebeat.com/security/api-security-incidents/
https://salt.security/blog/mythbusters-api-edition-zero-trust-and-its-limitations-for-api-security?
https://salt.security/blog/mythbusters-api-edition-zero-trust-and-its-limitations-for-api-security?
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Secure-Update-of-SW-and-FW-on-Devices-v1r72_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-Secure-Update-of-SW-and-FW-on-Devices-v1r72_pub.pdf
https://trustedcomputinggroup.org/resource/implicit-identity-based-device-attestation/
https://trustedcomputinggroup.org/resource/implicit-identity-based-device-attestation/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_SymIDAttest_v1_r0p95_pub-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_SymIDAttest_v1_r0p95_pub-1.pdf
https://www.opencompute.org/documents/ibm-white-paper-ownership-and-control-of-firmware-in-open-compute-project-devices
https://www.opencompute.org/documents/ibm-white-paper-ownership-and-control-of-firmware-in-open-compute-project-devices
https://www.wired.com/2014/07/usb-security/
https://www.wired.com/2014/07/usb-security/
https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/
https://securelist.com/equation-the-death-star-of-malware-galaxy/68750/
https://securelist.com/equation-the-death-star-of-malware-galaxy/68750/
https://hdl.handle.net/1920/5667
https://www.econ.cam.ac.uk/people-files/emeritus/pd10000/publications/09/abcde09.pdf
https://www.econ.cam.ac.uk/people-files/emeritus/pd10000/publications/09/abcde09.pdf

[67] D. Parnas, “On a ”Buzzword:” Hierarchical Structure,” in Proceedings
of Information Processing 74, IFIP Congress 74. North Holland, 1974,
pp. 336–339.

[68] G. Heiser, in The seL4 Microkernel – An Introduction. The seL4
Foundation, June 2020. [Online]. Available: https://sel4.systems/About/
seL4-whitepaper.pdf

[69] M. Bishop and M. Dilger, “Checking for Race Conditions in File
Accesses,” Computer Systems, vol. 9, no. 2, 1996.

IX. Appendix A: Zero Trust Outside of Network
Security

There are at least two ways to prove that zero trust is
impossible in security. The first is to find a security property
that cannot be verified or monitored unconditionally and with
certainty by a provably correct verifier or external monitor.
This was illustrated in Section III-A. Specifically, absence of
malware that does not have known externally visible behavior
pattern (i.e., no property or hyper-property) cannot be verified
or monitored unconditionally and with certainty in a “back
box” device. The second way is to find a security property
that can be verified or monitored unconditionally and with
certainty, but the correctness of the verifier or monitor is
uncertain. This is illustrated in Example 1 below.

Example 1: Almost Zero Trust
Suppose that a user has the unenviable task of solving

a linear Diophantine equation (https://en.wikipedia.org/wiki/
Diophantine equation) in two variables which nevertheless
warrants the use of computer-based tools to find all roots in
a large integer interval. These tools have the ultimate trust
liability for their integrity property: they are always believed
to produce correct (sets of) roots of the equation despite
using a possibly incorrect algorithm, a malware-compromised
program, or a corrupt computer hardware. Fortunately, reliance
on tool integrity is unnecessary, since

- the user can verify tool integrity with 100% certainty
efficiently; i.e., by substituting each set of roots in the equa-
tion and checking equality to zero, which requires only two
multiplications and one addition; and

- the verification is unconditional: it does not depend on
(i) secrets and unproven assumptions or outside trusted help
(e.g., a math enthusiast, a calculator); (ii) correct and un-
compromised algorithms, software, or hardware, and (iii)
limited adversary power in attacking the computer-based tools.

Furthermore, the user’s verification trivially satisfies all
operational security principles shown on the vertical axis of
Figure 1. However, to achieve zero trust, the verification
algorithm itself, no matter how simple (i.e., two multiplications
followed by an addition), must be demonstrably correct using
some measure of belief justification. Luckily, the multiplica-
tion and addition operations follow the axioms of arithmetic,
and hence the only remaining belief that must be measured
is that of the user’s own ability to perform simple arithmetic
operations on any integers in any large interval. This ability
may be perfect for relatively small integers when grade-
school algorithms suffice. However, in case of large integers,
when recursive divide-and-conquer methods may be needed,
a user’s arithmetic skills are often prone to error. Hence, a

verifier’s failure to perform a correct check for large integers
is lower bounded by some probability p > 0. This means
zero trust is almost perfect when p is small. (Zero trust
becomes conditional whenever calculating devices or external
help are used for verification). This example suggests that the
impossibility of unconditional zero trust in enterprise networks
is not a mere theoretical fact. As early warnings imply, it is
hard to find unconditional zero trust anywhere in security or
cryptography. �

Example 2: Conjectured Zero Trust
Early work that introduced the notion of verifiable com-

putation [63] showed that – efficiency notwithstanding – a
client can always verify the results of computation outsourced
to a wholly untrusted server (i.e., not even the hardware was
trusted) conditionally. That is, the result verification by clients
is predicated on the inability of a polynomially bounded adver-
sary to break the then-required fully homomorphic encryption
(FHE) primitive. Unavailability of practical FHE primitives
over the following decade motivated intensive research in effi-
ciently verifiable computations in real applications [64], cover-
ing integrity of blockchain, non-fungible token, and contract-
signing computations. All these applications illustrate useful
forms of reduced but definitely non-zero trust in practice. Zero
trust is conjectured because the cryptographic primitives used
assume polynomially bounded adversaries and demonstrably
correct trust zones of verifier devices. �

Example 3: Impractical Zero Trust
Removing trust liabilities is not always possible nor prac-

tical in computing. For example, verifying the result of a co-
NP complete problem produced by a computer can be highly
inefficient – more so than solving the problem in the first
place – and hence often impractical and left undone. There
exist numerous examples of patterns produced by an untrusted
source whose recognition by a trained machine-learning (ML)
algorithm can be successfully attacked; e.g., the ML algorithm
recognizes an unintended pattern. An adversary can capture the
source of the patterns and produce forgeries. In these cases,
verification can be incomplete or incorrect, and hence zero
trust cannot be achieved.

Another example of zero-trust impracticality appears in
network-mediated asymmetric protocols among human sub-
jects; i.e., protocols in which an initial sender of a message
benefits from the execution of the protocol but the recipient of
that message has no guarantees of sender’s honesty [15]. Can
a recipient verify the content of the message received from
a sender? Most recipients cannot perform the content verifi-
cation and must rely on external providers, or external trust
zones, that use ML classifiers for rating protocol input message
as safe/dangerous. This solution is safe but non-zero trust.
When ground truth is not discernible by deep ML classifiers,
external implicit trust zone must expand as competition among
a marketplace of classifiers becomes necessary to establish
which ML classifiers are the de facto holders of ground truth
in input-message verification. �

Example 4: Zero Trust can be Undesirable

16

https://sel4.systems/About/seL4-whitepaper.pdf
https://sel4.systems/About/seL4-whitepaper.pdf
https://en.wikipedia.org/wiki/Diophantine_equation
https://en.wikipedia.org/wiki/Diophantine_equation

Historically, humans have had implicit trust zones defined
by common socio-cultural, political, and business beliefs and
preferences. In some communities, individuals trust each other
without continuously verifying each other’s every decision in
matters of common welfare; i.e., trust is definitely non-zero, by
any definition. Often community trust is implicitly established
and not repeatedly verified. Behavioral economics found an
early correlation between non-zero trust and wealth, showing
that when humans trust each other their communities become
wealthy faster than those in which humans do not [14]. In
2009, Dasgupta [65] showed that communities where humans
trust each other increase their total factor productivity faster
than those in which humans do not, thereby establishing a
causality between non-zero trust and wealth. Of course, in
wealthier communities, trust is established based on beliefs
in the trustworthiness of others, decreased risk aversion, and
decreased betrayal aversion. Trust establishment occurs at a
“phishing equilibrium;” i.e., in the presence of fraudsters who
are a staple of economic life [66], just as adversaries are in
security.

X. Appendix B: Zero trust is a “buzzword”
Nearly five decades ago, David Parnas examined the use

of the hierarchical structure “buzzword” in operating sys-
tems [67]. He has pointed out that buzzwords often lack clear
definition, as their proponents:

A. assign different meanings to them in different systems;
B. do not explain them to others;
C. are unable to rule out inadequate alternatives; and
D. adopt imprecise terminology.
We use Parnas’ intuitive yet precise characterization of

“buzzwords” to argue that “zero trust” has earned the status
of a buzzword in network security.

The zero-trust buzzword can have egregious implications in
security. For example, when used beyond its original intent
of removing exclusive reliance on location-based perimeter
protection, it can lead to demonstrably inadequate counter-
measures to common security attacks, let alone advanced and
yet-unknown exploits. The buzzword label itself implies the
impossible in network security and excludes trust establish-
ment as a sound alternative.

A. Different meanings

Zero-trust architectures can have different meanings in
different network architectures.

1. In the simplest case, an enterprise network has a fixed
set of known endpoint devices and servers, and a single
administrative domain; i.e., a potentially large implicit trust
zone. As shown in Example 4 of Section V-B above, this
architecture (e.g., illustrated by NIST [1]) fails to minimize
this large trust zone as it lacks basic minimization criteria.

2. Enterprise-network architectures can be extended to allow
users to ”bring your own devices” (BYODs) rather than
limit configurations to fixed-endpoints networks. Example 2 of
Section V-B illustrates the expected insecurity consequences.

3. Multi-cloud services and patch servers under the control
of externally administered suppliers are also encouraged, and
so are multi-enterprise (e.g., peer) networks. This introduces
a new form of trust – inter-enterprise authentication trust [55].
Example 3 of Section V-B illustrates how this makes enterprise
networks dependent on externally administered trust zones
without meaningful recourse.

4. While not recommended by NIST but encouraged by
industry [6], enterprise-network architectures allow IoT and
edge devices that can operate in an unattended manner;
e.g., devices that could be captured and manipulated by an
adversary. Even if such devices are assigned immutable unique
identities [42], [47], an enterprise network cannot often detect
an adversary modification of the firmware in a physically
compromised device; see Example 3 of Section V-B.

B. Unexplained and unanticipated consequences

The key characteristics of zero trust have four unexplained
and unanticipated consequences. The examples below illustrate
four areas. Others exist.

1. Section III shows that zero trust is unachievable in any
enterprise network. This means that it is both theoretically
impossible as well as fundamentally impractical for network
application. Hence, it is senseless to ask [2], [3], [4], [5] for
any enterprise network to achieve it.

2. Trust-zone minimization is often conflated with trust
minimization. For example, NIST’s zero-trust architecture [1]
incorrectly suggests that the so called “zero-trust principles”
can provide trust minimization. Even if minimization shrinks
an implicit trust zone to a single device, it cannot minimize
trust because it admittedly does not provide any correctness
assurance for services within the trust zone. No matter how
useful, continuous verification, monitoring, and “zero-trust
principles” can never overcome the lack of security-property
assurance for services and devices inside a trust zone; see
Figure 1.

3. Implicit trust zone minimization can never be achieved by
an enterprise network for all its externally administered trust
zones, as illustrated in Figure 7 and explained in Example 3
of Section V-B. Reliance on external servers expands an en-
terprise’s implicit trust zones and prevents trust minimization
since external-server secure operation may be assured, if at
all, outside the jurisdiction of the enterprise. Unaccountable
external patch servers must often have unobstructed access
to enterprise device software and firmware, and lowering
privileges of these devices cannot prevent cross-zone attacks;
see Example 3 in Section V-B. An adversary’s locus of attack
is thus expanded without recourse.

4. Trust establishment, which fundamentally excludes zero
trust, is necessary in practice. Since zero trust is unachiev-
able, trust establishment becomes necessary; for example, in
enterprises engaging in electronic commerce or in supporting
social interactions [15]. When assurance of secure operation
in an implicit trust zone is low, few beliefs of trustworthiness
can be justified. Then both attack-risk mitigation and attack

17

deterrence must be employed to compensate for the extra se-
curity liability. (Addressing any subset of them is insufficient,
as already noted in Section II-B and illustrated in Figure 1).
Consequently, analysis of trade-offs among justified beliefs of
trustworthiness, risk mitigation, and attack deterrence is also
missing from zero-trust architectures.

C. Demonstrated inability to rule out inadequate alternatives

Zero-trust architectures admittedly avoid correctness assur-
ance and fail to employ some key operational assurances.
While this lowers development cost significantly, it also
implies that these architectures will be forever be unable
to rule out insecure network and applications designs. This
means that all “zero-trust principles,” verification checks, and
monitoring employed by these architectures are insufficient to
protect critical infrastructures. Here we illustrate two classes
of inadequacies that are not ruled out. Others exist.

1. Zero-trust architectures are vulnerable to incorrect en-
forcement of verification checks. Examples include:

- inability to guarantee that verification-check isolation
cannot be subverted; e.g., the signature verification check guar-
anteeing that a firmware upgrade22 by an external supplier is
authentic must be isolated inside the device’s micro-controller
by a verified firmware operating system (a la seL4 [68]);

- inability to eliminate time-of-check-to-time-of-use (TOCT-
TOU) gaps in applications, hosts, and network protocols, and
rule out well-known vulnerabilities [69];

- inability to eliminate inadequate composition of verifi-
cation checks that violate a desired policy; e.g., the order
of mandatory (MAC) and discretionary access-control (DAC)
checks matters, since an incorrect order (i.e., DAC before
MAC) violates information flow. Otherwise, new covert chan-
nels are introduced in violation of an information-flow policy.

A more general problem is that zero-trust architectures fail
to distinguish security properties that are verifiable/testable
from those which must be continuously monitored externally.
For example, they fail to separate which security properties
can be black-box tested and which require external moni-
toring [17]. This is particularly hard to reconcile since one
of the key requirements of zero-trust architecture is to use
black-box methods and tools (e.g., remote cloud-based tools)
for verification/testing and monitoring of network devices and
services. Inexpensive, scalable use of cloud services to monitor
remote endpoint systems and privileged system components,
such as OS kernels, is assumed by these architectures.

2. Cloud-based implementations of zero-trust architectures
are vulnerable to endpoint device attacks.

Exclusive reliance on cloud-based, client-less monitoring
of endpoint devices can be inexpensive but is inadequate
since end-to-end security can never be established by a single
(cloud) end. Deep endpoint-device scanning both by remote

22“By 2022, 70% of organizations that do not have a firmware up-
grade plan in place will be breached due to a firmware vulnerability.”
Quoted by Enterprise Best Practices for Firmware Updates, Eclypsium,
April 2, 2020. https://eclypsium.com/2020/04/02/enterprise-best-practices-for-
firmware-updates.

cloud tools (e.g., intended to detect misconfiguration) and anti-
malware tools cannot possibly work with significant assurance
because their remote device-firmware scanning requires direct
access to firmware content, which is impossible for black-box
devices; see Section III-A.

D. Inability to adopt precise terminology

The “zero trust” label itself fails to inspire confidence, as
it assigns a sharp all-or-nothing attribute (zero/non-zero) to a
noun (trust) that has always signified a range of beliefs and
preferences. For example, less verification leaves a higher trust
liability and more verification leaves less.

More precise terminology would distinguish the weaker
notion of implicit-trust-zone minimization from the strictly
stronger notion of trust minimization (which requires correct-
ness assurance), and both would be distinguished from trust
establishment – a stronger notion than both. These distinctions
are essential for understanding the virtues and limitation of the
zero-trust architectures.

18

	Introduction
	Background: trust, zero trust, trusted, and trust establishment
	Basic notions
	Trust establishment in security

	Zero trust is unachievable in security
	Impossibility
	Impracticality
	Zero trust is an unreachable limit of trust establishment

	Review of zero-trust architectures
	Key characteristics
	Conditions for achieving the main goal
	Optimistic implementation assumptions

	Zero-trust architectures are unsound
	Unsoundness
	Five Examples of Unsoundness

	Zero-trust architectures are inadequate for pervasive government use
	Low defense and good recovery value
	Addressing known weaknesses
	Low but non-zero defense
	Reduced recovery cost after network compromise

	Summary
	References
	Appendix A: Zero Trust Outside of Network Security
	Appendix B: Zero trust is a ``buzzword"
	Different meanings
	Unexplained and unanticipated consequences
	Demonstrated inability to rule out inadequate alternatives
	Inability to adopt precise terminology

