FORMALIZING THE HASHGRAPH GOSSIP PROTOCOL

Karl Crary CyLab Partners Conference September 24, 2019

Distributed shared ledger

- Consensus total order on "transactions"
 - No central authority
 - No reversal of transactions
- Applications:
 - Cryptocurrencies
 - Smart contracts
 - Digital property
 - Gaming

Scaling problem

- Bitcoin can handle \approx 7 transactions/second.
- Ethereum can handle ≈ 15 tps.
- Paypal can handle ≈ 450 tps
- Visa can handle 56k tps (claimed)
- Proof-of-work is secure because it is slow.
 - To serve as a general currency, we need a completely different technology.

Byzantine consensus

- Get participants to agree on something
- Up to 1/3 can break the rules
- Solved in theory in 1982 [Lamport, et al.]
 - Impractical: voting rounds require lots of messages

Hashgraph [Baird 2016]

- First practical algorithm
 - No proof-of-work
 - No voting messages
- Based on a gossip protocol:
 - Create event when receiving a message
 - Attach a payload of transactions
 - Track who talks to whom, in what order
 - Conduct a virtual election
 - Each event's vote is determined by its ancestry
 - Gossip allows each participant can carry out the election independently
 - Agree on a total order on network events

Hedera Hashgraph

- A distributed leger / cryptocurrency based on Hashgraph
- Gossip protocol's overhead is very low:
 - Don't send any messages you wouldn't send anyway
 - Add a gossip payload to each message
- Throughput ≈ 10k-500k tps (in experiments)

Honest peers

- Never create a fork
 - X and Y are a *fork* if they have the same creator, and neither is an ancestor of the other
- An honest peer's events are linearly ordered
- Over 2/3 are honest

Strongly seeing

- X sees Y if:
 - (1) X is a descendant of Y
 - (2) a technical condition holds, such that no event can see both sides of a fork
- X strongly sees Y if:
 - there exists a set of peers P such that:
 - (1) P contains over 2/3 of the peers
 - (2) for every Z in P
 - X is a descendant of Z
 - Z sees Y

Strongly-seeing lemma

- If X and X' are a fork, they cannot both be strongly seen, even by different events
- Proof
 - Suppose Y strongly-sees X, and Z strongly-sees X'
 - Let P and P' be the corresponding sets of peers
 - Then there exists at least one honest peer in $\mathsf{P} \cap \mathsf{P}'$
 - Let V and W be the mediating events on that honest peer
 - Then V and W are linearly ordered
 - Without loss of generality, assume V is an ancestor of W
 - Thus W sees X' (directly) and X (through V)
 - That can't happen

Witnesses

- Break events into rounds
- Each peer's first inhabitant in a round is called a *witness*
- Advance to a new round when you can strongly-see 2/3 of the previous round's witnesses
- Cheaters can have multiple witnesses per round
 - But by the lemma at most one can be strongly seen
 - The extra witnesses are irrelevant

Famous witnesses

- An event enters the consensus order when "most" peers can see it
 - Can't say all peers, because some might not be talking
 - You can't know if silent peers have seen it or not
- Use famous witnesses
- A witness is *famous* if most later witnesses can see it
 - Use virtual voting to determine
- Since it's famous, nearly everyone knows about it
 - (In particular, what it can see)
- An event enters the consensus order the first round in which every famous witness is a descendent

Verification

- Formalized correctness proof using Coq.
 - (Popular proof assistant developed in France.)
- 13k lines of Coq
- Gives 100% confidence that the algorithm works, barring some flaw in the model or in Coq.
 - (Extremely unlikely.)

Ongoing and future work

- Verify the algorithm that is actually implemented.
- Verify the Hashgraph software.
 - First, develop the machinery to make it possible.

Thank you